Fraud Detection of Bulk Cargo Theft in Port Using Bayesian Network Models
نویسندگان
چکیده
منابع مشابه
The Detection and Prevention of Cargo Theft
http://www.aic.gov.au Adam Graycar Director Many companies suffer losses through cargo theft, particularly small businesses, yet it is an area of business crime that receives scant attention. A single truckload of cargo can be worth as much as $3 million. The risk of theft, especially if the goods have a black market value, is very real. Worldwide, the direct cost of cargo theft is estimated at...
متن کاملFinancial Fraud Detection using Radial Basis Network
The ubiquitous cases of abnormal transactions with intent to defraud is a global phenomenon. An architecture that enhances fraud detection using a radial basis function network was designed using a supervised data mining technique― radial basis function (RBF) network, interpolation approximation method. Several base models were thus created, and in turn used in aggregation to select the optimum...
متن کاملCredit Card Fraud Detection Using Neural Network
The payment card industry has grown rapidly the last few years. Companies and institutions move parts of their business, or the entire business, towards online services providing e-commerce, information and communication services for the purpose of allowing their customers better efficiency and accessibility. Regardless of location, consumers can make the same purchases as they previously did "...
متن کاملassessment of the efficiency of s.p.g.c refineries using network dea
data envelopment analysis (dea) is a powerful tool for measuring relative efficiency of organizational units referred to as decision making units (dmus). in most cases dmus have network structures with internal linking activities. traditional dea models, however, consider dmus as black boxes with no regard to their linking activities and therefore do not provide decision makers with the reasons...
Auto claim fraud detection using Bayesian learning neural networks
This article explores the explicative capabilities of neural network classifiers with automatic relevance determination weight regularization, and reports the findings from applying these networks for personal injury protection automobile insurance claim fraud detection. The automatic relevance determination objective function scheme provides us with a way to determine which inputs are most inf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Sciences
سال: 2020
ISSN: 2076-3417
DOI: 10.3390/app10031056